
Advanced Features of Prolog LP&ZT 2005

Advanced Prolog

The purpose of this lecture is to introduced some of the more
advanced programming constructs in Prolog not covered in
previous lectures:

• Decomposing terms with =../2

• Collecting answers: findall/3 etc.

• Dynamic predicates: assert/1 and retract/1

• Input/output and file handling

Ulle Endriss (ulle@illc.uva.nl) 1



Advanced Features of Prolog LP&ZT 2005

Term Decomposition

Recall that a compound term consists of a functor and one or more
arguments.

Given a term T, the predicate =../2 (which is defined as an infix
operator) can be used to generate a list, the head of which is the
functor of T and the tail of which is the list of arguments of T:

?- loves(john,mary) =.. List.

List = [loves, john, mary]

Yes

?- elephant =.. List.

List = [elephant]

Yes

Ulle Endriss (ulle@illc.uva.nl) 2



Advanced Features of Prolog LP&ZT 2005

Composing Terms

You can also use =../2 to compose new terms:

?- member(X, [f,g,h]), Y =.. [X,a,b].

X = f

Y = f(a, b) ;

X = g

Y = g(a, b) ;

X = h

Y = h(a, b) ;

No

This is very useful, because using a variable in the position of a
functor would cause a syntax error:

?- member(X, [f,g,h]), Y = X(a,b).

ERROR: Syntax error: Operator expected

Ulle Endriss (ulle@illc.uva.nl) 3



Advanced Features of Prolog LP&ZT 2005

Exercise: Positive Formulas

A formula of propositional logic that does not contain the negation
symbol is called a positive formula.

Write a predicate that can recognise positive formulas.

Examples:

?- positive((p or q) and (q or r)).

Yes

?- positive(p and (neg q or r)).

No

Ulle Endriss (ulle@illc.uva.nl) 4



Advanced Features of Prolog LP&ZT 2005

Solution

First make sure the appropriate operators are defined:

:- op(100,fy,neg), op(200,yfx,and), op(300,yfx,or).

A formula is positive iff it is an atom or its principal operator is
binary and the two subformulas are positive:

positive(Formula) :-

atom(Formula).

positive(Formula) :-

Formula =.. [_,Left,Right],

positive(Left),

positive(Right).

The anonymous variable _ will match either and or or.
The predicate will fail for any formula of the form neg(_), simply
because there’s no matching clause for this case.

Ulle Endriss (ulle@illc.uva.nl) 5



Advanced Features of Prolog LP&ZT 2005

Exercise: Matching Subterms

Write a predicate that, given two terms, succeeds iff the first term
matches a subterm of the second. Examples:

?- subterm(f(a,b), f(g(a,b,c),f(a,b),c)).

Yes

?- subterm(f(X,X), g(f(a,b))).

No

?- subterm(Term, f(g(a,b),a)).

Term = f(g(a, b), a) ;

Term = g(a, b) ;

Term = a ;

Term = b ;

Term = a ;

No

Ulle Endriss (ulle@illc.uva.nl) 6



Advanced Features of Prolog LP&ZT 2005

Solution

Any term is a subterm of itself (base case). Otherwise, the first
term is a subterm of the second if the latter is a compound term
and the former is a subterm of one of the arguments of that
compound term (recursion step).

subterm(Term, Term).

subterm(SubTerm, Term) :-

Term =.. [_|Arguments],

member(Argument, Arguments),

subterm(SubTerm, Argument).

This solution assumes that the second argument will be a ground
term. It would, for instance, succeed for subterm(f(X),X) and
then give an error message in case of forced backtracking (try it!).

Ulle Endriss (ulle@illc.uva.nl) 7



Advanced Features of Prolog LP&ZT 2005

Summary: Decomposing Terms with =../2

• The built-in predicate =../2 can be used to de/compose terms.
It is declared as a (non-associative) infix operator.

• A goal of the form Term =.. List succeeds iff List is a list,
the head of List is the functor of Term, and the tail of List is
the list of arguments of Term.

Either Term or List could be a variable, but not both.

Ulle Endriss (ulle@illc.uva.nl) 8



Advanced Features of Prolog LP&ZT 2005

Backtracking and Alternative Answers

Next we are going to see how to collect all alternative answers to a
given query (or goal) in a list.

Assume the following program has been consulted:

student(ann, 44711, pass).

student(bob, 50815, pass).

student(pat, 41018, fail).

student(sue, 41704, pass).

We can get all the answers to a query by forcing Prolog to
backtrack. Example:

?- student(Name, _, pass).

Name = ann ;

Name = bob ;

Name = sue ;

No

Ulle Endriss (ulle@illc.uva.nl) 9



Advanced Features of Prolog LP&ZT 2005

Collecting Answers in a List

Instead, the findall/3 predicate can be used to collect these
answers in a single list. Examples:

?- findall(Name, student(Name,_,pass), List).

Name = _G373

List = [ann, bob, sue]

Yes

?- findall(Name, student(Name,_,dunno), List).

Name = _G180

List = []

Yes

Here _G373 and _G180 simply indicate that the variable Name is
still uninstantiated after the goal has been executed.

Ulle Endriss (ulle@illc.uva.nl) 10



Advanced Features of Prolog LP&ZT 2005

Specification of findall/3

Schema: findall(+Template, +Goal, -List)

Prolog will search for every possible solution to the goal Goal
(through backtracking). For every solution found, the necessary
instantiations to Template are made, and these instantiations are
collected in the list List.

That is, Template and Goal should share one or more variables.
Variables occurring in Goal but not in Template may have any
value.

Ulle Endriss (ulle@illc.uva.nl) 11



Advanced Features of Prolog LP&ZT 2005

Another Example

Here is again our program:

student(ann, 44711, pass).

student(bob, 50815, pass).

student(pat, 41018, fail).

student(sue, 41704, pass).

An example with a complex goal and a template with two variables:

?- Goal = (student(Name,Num,Grade), Num < 50000),

findall(Name/Grade, Goal, List).

Goal = student(_G180, _G181, _G182), _G181<50000

Name = _G180

Num = _G181

Grade = _G182

List = [ann/pass, pat/fail, sue/pass]

Yes

Ulle Endriss (ulle@illc.uva.nl) 12



Advanced Features of Prolog LP&ZT 2005

Collecting Answers with bagof/3

The bagof/3 predicate is similar to findall/3, but now the values
taken by variables occurring in the goal but not the template do
matter and a different list is created for every possible instantiation
of these variables. Example:

?- bagof(Name/Num, student(Name,Num,Grade), List).

Name = _G180

Num = _G181

Grade = fail

List = [pat/41018] ;

Name = _G180

Num = _G181

Grade = pass

List = [ann/44711, bob/50815, sue/41704] ;

No

Ulle Endriss (ulle@illc.uva.nl) 13



Advanced Features of Prolog LP&ZT 2005

Example with an Unbound Variable

In the following query we say that we are not interested in the
value of Num (by using the ^ operator), but Prolog will give
alternative solutions for every possible instantiation of Grade:

?- bagof(Name, Num^student(Name,Num,Grade), List).

Name = _G180

Num = _G181

Grade = fail

List = [pat] ;

Name = _G180

Num = _G181

Grade = pass

List = [ann, bob, sue] ;

No

Ulle Endriss (ulle@illc.uva.nl) 14



Advanced Features of Prolog LP&ZT 2005

Summary: Collecting Answers

• findall/3 collects all the answers to a given goal that match a
given template in a list. Variables not occurring in the template
may take different values within the list of answers.

• bagof/3 is similar, but now a different list is generated for
every possible instantiation of the variables not occurring in
the template. Use the Var^ construct to allow for a variable to
take different values within the same list of answers.

• The predicate setof/3 works like bagof/3, but duplicates are
being removed and the list is being ordered.

• Note that findall/3 returns an empty list if the goal in the
second argument position cannot be satisfied, while bagof/3

and setof/3 will simply fail.

• Use these predicates sparingly!

Ulle Endriss (ulle@illc.uva.nl) 15



Advanced Features of Prolog LP&ZT 2005

Assert and Retract

Prolog evaluates queries with respect to a knowledge base (your
program + definitions of built-in predicates). It is possible to
dynamically add clauses to this knowledge base.

• Executing a goal of the form assert(+Clause) will add the
clause +Clause to the Prolog knowledge base.

• Executing retract(Clause) will remove that clause again.

• Using retractall(+Clause) will remove all the clauses
matching Clause.

A typical application would be to dynamically create and
manipulate a database. In that case the Clauses will usually be
simple facts.

Ulle Endriss (ulle@illc.uva.nl) 16



Advanced Features of Prolog LP&ZT 2005

Database Example

?- assert(zoo(monkey)), assert(zoo(camel)).

Yes

?- zoo(X).

X = monkey ;

X = camel ;

No

?- retract(zoo(monkey)).

Yes

?- zoo(X).

X = camel ;

No

Ulle Endriss (ulle@illc.uva.nl) 17



Advanced Features of Prolog LP&ZT 2005

Dynamic Manipulation of the Program

You can even declare your program predicates as being dynamic
and assert and retract clauses for these predicates.

Example: Suppose we have consulted our “big animals” program
from the first lecture (see next slide for a reminder) and suppose we
have declared bigger/2 as a dynamic predicate . . .

?- is_bigger(camel, monkey).

No

?- assert(bigger(camel,horse)).

Yes

?- is_bigger(camel, monkey).

Yes

Ulle Endriss (ulle@illc.uva.nl) 18



Advanced Features of Prolog LP&ZT 2005

The Big Animals Program

:- dynamic bigger/2.

bigger(elephant, horse).

bigger(horse, donkey).

bigger(donkey, dog).

bigger(donkey, monkey).

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

Ulle Endriss (ulle@illc.uva.nl) 19



Advanced Features of Prolog LP&ZT 2005

Fast Fibonacci

A possible application of dynamic predicates is to store previously
computed answers, rather than to compute them again from
scratch each time they are needed. Example:

:- dynamic fibo/2.

fibo(0, 1). fibo(1, 1).

fibo(N, F) :-

N >= 2, N1 is N - 1, N2 is N - 2,

fibo(N1, F1), fibo(N2, F2), F is F1 + F2,

asserta(fibo(N,F):-!). % assert as first clause

This is much faster than the standard program for the Fibonacci
sequence (= the above program without the last line). However,
the other solution I’ve shown you (the one with just a single
recursive call) is still better than this. Try it for yourself!

Ulle Endriss (ulle@illc.uva.nl) 20



Advanced Features of Prolog LP&ZT 2005

Summary: Dynamic Predicates

• Use assert/1 to add clauses to the knowledge base and use
retract/1 or retractall/1 to remove them again.

• If the predicate to be asserted or retracted is already in use,
then it needs to be declared as being dynamic first (this may
work differently in different Prolog implementations; in SWI
Prolog use the dynamic directive).

• If the order of clauses in the dynamic knowledge base matters,
there are further predicates such as asserta/1 and assertz/1

that can be used (check the manual for details).

• Very important: Be extremely careful when using dynamic
predicates! They obfuscate the declarative meaning of Prolog
and make it much harder to check programs (the same code
will behave differently given different dynamic knowledge
bases). Often a sign of poor programming style!

Ulle Endriss (ulle@illc.uva.nl) 21



Advanced Features of Prolog LP&ZT 2005

Input/Output and File Handling

We have already seen how to explicitly output data onto the user’s
terminal using the write/1 predicate. Example:

?- X is 5 * 7, write(’The result is: ’), write(X).

The result is: 35

X = 35

Yes

Now we are also going to see how to read input. In Prolog, input
and output from and to the user is very similar to input and output
from and to files, so we are going to deal with these in one go.

Ulle Endriss (ulle@illc.uva.nl) 22



Advanced Features of Prolog LP&ZT 2005

Streams

• In Prolog, input and output happens with respect to two
streams: the current input stream and the current output
stream. Each of these streams could be either the user’s
terminal (default) or a file.

• The current output stream can be changed to Stream by
executing the goal tell(+Stream). Example:

?- tell(’example.txt’).

Yes

• Now write/1 does not write to the user’s terminal anymore,
but to the file example.txt:

?- write(’Hello, have a beautiful day!’).

Yes

• To close the current output stream, use the command told/0.

Ulle Endriss (ulle@illc.uva.nl) 23



Advanced Features of Prolog LP&ZT 2005

Reading Terms from the Input Stream

• The corresponding predicates for choosing and closing an input
stream are see/1 and seen/0.

• To read from the current input stream, use the predicate
read/1. But note that this only works if the input stream is a
sequence of terms, each of which is followed by a full stop (as in
a Prolog program file, for instance).

Ulle Endriss (ulle@illc.uva.nl) 24



Advanced Features of Prolog LP&ZT 2005

Reading Terms from a File
Content of file students.txt:

% Database of students

student(ann, 44711, pass).

student(bob, 50815, pass).

student(pat, 41018, fail).

?- see(’students.txt’).

Yes

?- read(Next).

Next = student(ann, 44711, pass)

Yes

?- read(Next).

Next = student(bob, 50815, pass)

Yes

?- read(Next).

Next = student(pat, 41018, fail)

Yes

?- read(Next).

Next = end_of_file

Yes

?- seen.

Yes

Ulle Endriss (ulle@illc.uva.nl) 25



Advanced Features of Prolog LP&ZT 2005

Example with User Input

Consider the following program:

start :-

write(’Enter a number followed by a full stop: ’),

read(Number),

Square is Number * Number,

write(’Square: ’),

write(Square).

After compilation, it works as follows:

?- start.

Enter a number followed by a full stop: 17.

Square: 289

Yes

Ulle Endriss (ulle@illc.uva.nl) 26



Advanced Features of Prolog LP&ZT 2005

Summary: Input/Output and File Handling

• Input and output use the concept of streams. The default
input/output stream is the user’s terminal.

• Main predicates:

– see/1: choose an input stream

– seen/0: close the current input stream

– tell/1: choose an output stream

– told/0: close the current output stream

– read/1: read the next term from the input stream

– write/1: write to the output stream

• Using read/1 and write/1 only works with text files that are
collections of Prolog terms. To work with arbitrary files, have a
look at predicates such as get/1 and put/1.

• There are many more input/output predicates in the manual.

Ulle Endriss (ulle@illc.uva.nl) 27


